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Abstract: The join of two relations is an important oper-
ation in database systems. It occurs frequently in relational
queries, and join performance is a significant factor in over-
all system performance. Cost models for join algorithms are
used by query optimizers to choose efficient query execu-
tion strategies. This paper presents an efficient analytical
model of an important join method, the hybrid hash join al-
gorithm, that captures several key features of the algorithm’s
performance — including its intra—operator parallelism, inter-
ference between disk reads and writes, caching of disk pages,
and placement of data on disk(s). Validation of the model
against a detailed simulation of a database system shows
that the response time estimates produced by the model are
quite accurate.

1 Introduction

Relational database systems organize information into a
collection of tables. The relational join operator is used
to relate information from two or more tables. Thus,
joins are a frequently occurring operation in relational
queries. Additionally, joins are one of the most expen-
sive operations that a relational database system per-
forms. Joining two large tables can consume a signif-
icant amount of the system’s CPU cycles, disk band-
width, and buffer memory. For this reason, efficient join
algorithms are a critical factor in determining relational
database system performance.

Accurate and efficient join algorithm cost models are
also important, as they are needed by relational query
optimizers (which employ cost-based optimization algo-
rithms) in order to derive efficient processing plans for
relational queries. Furthermore, simulation is currently
used extensively for studying parallel execution strate-
gies for complex queries [CLYY92] and for evaluating
strategies for handling complex multiuser workloads in
centralized database systems [BCL93, MD93]. Most
simulation studies of parallel database systems have
not explored truly large systems (e.g. 100’s of nodes)
due to the prohibitive costs of simulating such systems
in detail. If accurate analytical models could be de-
veloped, such scheduling strategies could be evaluated
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more quickly and over wider regions of the system de-
sign space, including more realistic system sizes. As a
starting point, accurate analytical models that capture
centralized query performance are required. Our focus
here is the development of such a model for the hybrid
hash join algorithm that was introduced in [DKO™84].

Simple analytic cost models for hash based join algo-
rithms were first presented in [DKO*84, Sha86]. These
models only count the total number of page I/O opera-
tions in the algorithm. A more complete model, recently
presented in [HCL93|, breaks up the cost of perform-
ing disk I/O operations into various parts and carefully
counts each part. However, intra—operator disk con-
tention and CPU costs are not addressed in this model.
In [LY90], the authors investigated the effectiveness of
parallel hybrid hash join algorithms for a system run-
ning a single join. However, their model of the individ-
ual processing nodes is quite simplistic, e.g., it does not
consider the impact of intra—operator disk contention.
This paper develops an accurate model of the hybrid
hash join algorithm that includes these costs and is nev-
ertheless efficient to evaluate.

We develop an analytical model of the hybrid hash
join algorithm for the case of a single join operation,
implemented using two processes, running on a single
node of a database system. This situation presents two
particular challenges for creating an accurate analyti-
cal model. First, the intra-operator disk interference
patterns are more complex to analyze than the ran-
dom interference that typically occurs between unre-
lated processes. Second, disk seek times are influenced
by file placement as well as by interference. The model
also captures other significant system behavior, such
as intra—operator synchronization and caching of disk
pages, which also affects the performance of the algo-
rithm. Our model is based on the approximate mean—
value analysis, an approach that has proven accurate in
modeling parallel architectures [VLZ88, WE90, CS91].
Specific system effects are captured by modifying the re-
sponse time equations. Validation of the model against
the simulator used in [BCL93, MD93] shows that the
model yields accurate results.

The remainder of the paper is organized as follows:
Section 2 describes the hybrid hash join algorithm. Sec-
tion 3 describes the analytical model for the hybrid hash
join. The results of the validation of the model and
several other experiments, including a comparison with
previous models, are described in Section 4. Finally,
Section 5 contains our conclusions.



2 Background

The tables in a relational database system are called
relations. Each relation is structured as a set of tu-
ples, with each tuple consisting of an ordered list of
attributes. A (binary) join operator, one of the funda-
mental operations in a relational database system, re-
lates tuples from two relations by matching one or more
attributes of the tuples according to some specified con-
dition. For example, the condition for the equijoin op-
erator, by far the most common form of join, is that the
attribute values be equal.

Various join algorithms have been proposed for per-
forming the equijoin operation [ME92, Gra93]. In some
cases, the process of matching tuples is made faster
by the existence of an access structure, such as a B-
tree [Com79], on the join attribute of one of the rela-
tions. However, in the case of an unanticipated join,
or when the relations to be joined are both very large,
an ad hoc join algorithm is normally used. More-
over, as database sizes increase, and interest in run-
ning complex decision support queries grows, the im-
portance of efficient ad hoc join algorithms continues
to increase. Sort—merge and hash based join algo-
rithms [BE77, Bra84, DKO*84, Sha86] are favored for
ad hoc joins. A hash based algorithm known as hybrid
hash has been shown to be particularly effective for per-
forming ad hoc joins [DKO*84, Sha86]. The details of
this algorithm and key aspects of its implementation are
discussed in the next two sections.

2.1 The Hybrid Hash Join Algorithm

Hybrid hash, like other hash—based join algorithms, uses
hashing to improve the speed of matching tuples. That
is, hashing is used to partition the two input relations
such that a hash table for each partition of the smaller
input relation can fit in main memory. Corresponding
partitions of the two input relations are then joined by
building an in—memory hash table for the tuples from
the smaller input relation, and then probing the hash
table with the tuples from the corresponding partition
of the larger input relation.

The tasks involved in a hybrid hash join are frequently
implemented as a collection of processes, particularly
in parallel database systems [DG92]. One benefit of
doing so is that the construction (and later probing)
of the hash table for a given join operation can pro-
ceed in parallel with the reading of the input relations
from disk. A more substantial benefit, particularly for
complex queries, is that scalable parallel data flow im-
plementations are possible. For example, the tasks of
reading the input relations and of building/probing the
hash table can each be implemented as a set of paral-
lel processes, with each process running on a separate
node. Each process in the set performs the same task on
different data (e.g., the data that is stored on its node),
passing its output tuples to the process responsible for
performing the next task on those tuples. In a parallel
database system, such a multiple process implementa-
tion allows for pipelining between multiple join opera-
tors. For these reasons, we will focus our attention here

on the multiple process implementation of the hybrid
hash algorithm.

The details of the hybrid hash join algorithm for a
centralized database system, or for a node of a parallel
database system, are as follows. Let R and S be the two
input relations to be joined and let |R| and |S| denote
the number of pages in each relation. Without loss of
generality, we assume that |R| < |S|. The smaller re-
lation, R, is called the building relation, and the larger
relation, S, is called the probing relation. The join is
implemented by two processes, a scan process and a
join process.! The scan process reads pages from the
input relations and passes them to the join process via
a buffer.? Frequently, join queries also involve selection
predicates that restrict the tuples of the base relations
(R and S) that participate in the join. When such predi-
cates are present, the scan process applies the predicates
to the tuples of the input relations and only passes on
those tuples that satisfy the predicates.

Let B + 1 be the number of partitions of each in-
put relation. The join process divides the two relations
into these partitions and then processes each partition.
The execution of the join proceeds in B + 1 consecutive
phases, with each phase having two consecutive opera-
tions called the build and probe operations. Phase 0 is
illustrated in Figure 1. In the first part of this phase
(phase-0-build), the scan process scans the pages of the
building relation R and applies any selection predicate.
Tuples that satisfy the predicate, and are thus eligible
for the join, are buffered and passed to the join process
in page-size chunks. The join process reads the pages
from the buffer and hashes each tuple to a value between
0 and B. Tuples that hash to the value 0 are inserted
into an in—memory hash table. Tuples that hash to the
values 1..B are written to a page-sized output buffer
that is allocated for that partition. Each of the parti-
tions, 1..B, has a file on disk (called a “bucket file”) to
which the corresponding output buffer page is flushed
each time it becomes full.

In the second part of phase 0 (phase-0O-probe), the
scan process scans the probing relation S, applies any
selection predicate, and writes the selected tuples to the
buffer. The join process reads pages from the buffer and
applies the same hash function used in phase-0-build. If
a tuple hashes to the value 0, the join process probes the
in—memory hash table for matching tuples and outputs
any matching tuple pairs; these constitute the result of
the join. The join process writes tuples that hash to
the values 1..B to the appropriate output buffer pages,
which are flushed to corresponding S bucket files on disk
when full.

At the end of phase-0, the R and S tuples in partition

1Actua]ly, the join is usually implemented by three processes — a
scan process for each of the input relations and a join process. How-
ever, the two scan processes are used serially. Hence, conceptually
and for the purpose of modeling, we can treat the two scan processes
as a single process with a synchronization step in the middle.

2For an implementation of the hybrid hash join on a parallel
database machine, the join and scan processes may be on different
nodes. In that case, the buffer is used for sending and receiving pages
over the network.



0 have been joined and the remaining tuples are waiting
in appropriate pairs of bucket files on disk. In each of
the remaining B phases, the corresponding partitions of
the building relation R and the probing relation S are
joined by the join process. Each phase-i (1 <i < B) has
two parts, phase—i—build and phase-i—probe. In phase—
i-build, the join process reads the i*" partition of the
building relation R from disk, one page at a time, and
builds an in-memory hash table containing its tuples.
The join process then moves to phase—i—probe, where
it reads the i*" partition of the probing relation S one
page at a time. For each tuple in the partition, the join
process probes the in—memory hash table for matches,
and it appends any matching tuple pairs to the result
of the join.
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Figure 1: Phase-0 of the hybrid hash join.

It should be noted that if the hash function used by
the join results in a non-uniform distribution of tuples
across the B + 1 partitions, then some partitions may
not fit entirely in main memory. This may happen if the
hash function is imperfect or if the values of the join at-
tribute in the building relation R are skewed. To handle
most such cases, the database system typically allocates
a few extra pages to the hash table (i.e., it plans for
a small number of overflow pages when deciding how
many partitions are needed). Techniques for handling
more significant data skew while joining two relations
are discussed in [Sha86, KNT89]. The model developed
in Section 3 assumes that no partitions overflow, but it
could be extended to model overflows if desired.

2.2 Salient Aspects of the Algorithm

In this section we discuss several special characteristics
of the implementation of the algorithm that must be
considered when constructing the model.

First, the buffer that is used for passing pages between
the scan and join processes (illustrated in Figure 1) is of
finite size. As aresult, in phase—0, the scan process must
block whenever this buffer is full. Furthermore, the scan
process can never get more than N pages ahead of the
join process (where N is the size of the buffer in pages).

Second, to reduce the cost of sequential reads, disks
often have a disk cache for prefetching data. With a
disk cache of size K, a disk read can prefetch up to
K sequential blocks of additional data when processing
a read request. Subsequent sequential reads will find
the requested data in the disk cache and will not have
to actually perform a disk I/O. Furthermore, in current
systems, disk scheduling is done by the operating system
(which does not know which pages are available in the
disk cache). Thus, all read requests will actually queue
for the disk, but requests that are serviced from the
disk cache complete quickly once the read request is
issued. (Future disk controllers may become responsible
for disk scheduling and may eliminate the unnecessary
queueing.)

Third, the placement of files on the disk(s) can have a
significant effect on the execution time of the join. If the
input relations (R and S) and the temporary bucket files
are on the same disk, then typically the input relations
are read from one cylinder while the bucket file pages
are written on another cylinder. Compared to the case
where a separate disk is used for the bucket files, when
a single disk is used the disk seek times can be highly
non-uniform and the disk arm may experience a lot of
movement in phase—0. Specifically, read requests that
do not have intervening write requests will have much
smaller seek times than read requests that occur imme-
diately after an intervening write request. The same
holds for write requests with and without intervening
read requests. Thus, interleaved read and write requests
increase each other’s service times.?
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Figure 2: The Read/Write Interference Patterns.

Finally, when the R and S data files and the tempo-
rary bucket files are on the same disk, particular I/0
interference patterns occur between the scan and join
processes in phase 0. These interference patterns are
illustrated in Figure 2. Recall that in phase—0, the scan
process repeatedly reads a disk page, applies a selection
predicate to the tuples on the page, and then writes
the selected tuples to a buffer. Thus, the scan performs
very little computation between two disk read requests.
This implies that when a write operation queues be-
hind a read request, it will cause the next read request
(which will arrive very soon after the write is initiated)
to queue for nearly the entire time of the write opera-
tion. Furthermore, the read request behind which the
write queues is likely to be a read—miss, because read
hits have negligible service times. In addition, since
the scan process is I/O bound, the write operation that

3From this description, it would seem advantageous to use a sepa-
rate disk for the temporary bucket files, thereby avoiding interference
between the disk reads and writes. However, with current technologi-
cal trends, a data placement strategy that fully declusters all (except
for very small) relations across all available disks actually achieves the
best performance [MD].



queues behind the read—miss is likely to queue for most
of the read access time. This scenario is depicted in
Figure 2(a). Figure 2(b) shows the case where a write
arrives at an idle disk; the write request will also cause
the next read request (a read-hit or a read-miss) to
queue for nearly the entire write access time.

3 The Analytical Model

This section develops an approximate mean value anal-
ysis (MVA) model of a single hybrid hash join query
executing on a stand—alone system consisting of a single
CPU and a single disk. The specific behaviors of the
processes discussed in Section 2.2, such as their I/0O in-
terference pattern and the non-uniform seek times, are
captured by modifying the MVA response time equa-
tions. Two models, a process model and a system model,
are used to define the behavior of the join. The process
model is used to capture the overall synchronization be-
havior of the processes as they move from one phase of
the algorithm to the other, while the system model rep-
resents the physical resources in the database system as
service centers in a queueing network.

3.1 The Process Model

The process model represents the process structure (i.e.,
the phase behavior of the scan and join processes) in the
algorithm’s implementation. Both processes are simul-
taneously active throughout phase—0 of the join. As
explained in Section 2, the scan process performs the
disk reads and does some computation on the tuples in
the pages read, while the join process performs other
computation on the pages received from the scan and
occasionally writes data pages to the disk. The two
processes are modeled as two customers in the queue-
ing network model, each in a separate class, switching
classes as processing progresses from the build phase
to the probe phase. The class switching, illustrated in
Figure 3, is necessary so that different resource require-
ments can be specified in the different phases. In phases
1..B, only the join process is active, and there is no inter-
ference from other customers; the time spent executing
these phases, denoted by D5 and Dg, can be computed
by simply summing their resource requirements.*

Phase-0-Build Phase-0-Probe Phase-i-Build Phase-i-Probe

Scan/

Reader| Class1 Class 3 _ e

Join/ Join/
Writer Class 2 Class 4 Reader Class 5 Class 6

Figure 3: The process model.

To determine the overall response time (i.e. execution
time) for the join, we use the system queueing network
model described in the following section to compute the
mean response times for classes 1 through 4, denoted by
R;...R4. The overall mean response time of the join (R)

4For systems with multiple queries and/or transactions, of course,
the join process would experience interference in these phases. Thus,
the customer representing the join process would cycle in the queue-
ing network during these phases, whereas the customer representing
the scan process would visit a delay center to represent its period of
inactivity. The mean time at the delay center would be computed
from an iterative solution of the overall model.

is then estimated by
R = max(Ry, Ry) + max(R3, Ry) + D5 + Dg (1)
We note that the overall mean response time (R) is an
approximation, as each of the first two terms is the max-
imum of two mean response times (and not the mean of
the maximum response time).

3.2 The System Model

The system that we are modeling consists of two re-
sources, a CPU and a disk. The simple queueing net-
work model that represents the system is shown in Fig-
ure 4. The delay center in the network represents time
during which either the scan process or the join process
blocks due to synchronization on the buffer that they
use to communicate. A similar approach was used to
model synchronization delays in [HT83]. The scan pro-
cess blocks if the buffer is full, whereas the join process
blocks if the buffer is empty, as described in Section 2.
Since the processes are fairly tightly synchronized (i.e.,
the size of the buffer is assumed to be fairly small), we
assume that in fact both processes complete almost si-
multaneously. We thus determine the mean time at the
delay center for the faster process by iteratively solving
the model and setting this value to the difference be-
tween the estimated mean execution times of the two
processes. For example, in a phase where the join is the
faster process, a synchronization delay is added for the
join; this delay is set to a value that makes the over-
all mean response time of the join the same as that of
the scan. The queueing network model is solved using
approximate MVA techniques [RL80, LZGS84]. To cap-
ture the specific interference patterns and service times
of the customers at the disk, we create customized re-
sponse time equations for the disk requests. These cus-
tomized equations are presented in Section 3.3.2.

Scan Process
77777 Join Process

CPU Disk

Figure 4: The queueing network model.

3.3 The Queueing Model Equations

The inputs to the model, shown in Tables 1 and 2, con-
sist of the system hardware and the software parame-
ters. The seek factor mentioned in Table 1 is a con-
stant that, when multiplied by the square root of the
seek distance (in cylinders), determines the seek time in
milliseconds [BG88]. The settle time is the average time
that it takes for the disk arm to settle over the appropri-
ate cylinder after a seek. When the hash table of a par-
tition of the building relation is formed, some additional
memory is required due to data structure overhead (i.e.,
this is additional memory beyond the space required to
simply hold the R tuples of the partition). The hash
factor in Table 2, Fjqsp, gives the factor by which the
memory allocation is expanded. In other words, when



multiplied by the number and size of the tuples in the R
partition being built, this factor gives the total amount
of memory required for holding the partition’s hash ta-
ble. (Note that Fj,s, is sometimes referred to as the
“fudge factor” in the database literature). Sizegypie in
Table 2 gives the size of the R and S tuples in bytes.
In general, of course, the tuple sizes of relations R and
S will be different; for simplicity, we assume here that
the two relations have tuples of the same size, though
generalizing the model in this regard is straightforward.
The meanings of the remaining parameters should be
clear from their descriptions in the tables.

Symbol | Parameter

MIPS MIPS rating of the CPU

Sizemem | Main memory size (in pages)
Sizepage | Size of a page (in bytes)

Focer Seek factor

Fprey Num. of pgs. fetched by a disk read

(incl. the requested and prefetched pgs)
Tyot Maximum rotational latency

Tyfer Transfer rate
Tsettle Settle time

Table 1: Hardware Input Parameters.
Symbol | Meaning
Flosh Extra space required by a hashed tuple
Isena #instr to initiate a page send
Irccw #instr to initiate a page receive

Ise #instr for applying the select
predicate to a tuple

Thash #instr for inserting a tuple
into a hash table
Iyrobe #instr for probing the hash table once
Teopy #instr for a byte copy
Liortio #instr for starting a disk I/0O
Sizeiupre | Size of a tuple (in bytes)
|R| Size of the building relation (in pages)
|S] Size of the probing relation (in pages)
Table 2: Software Input Parameters.
3.3.1 Estimating The Mean Visit Counts for

the Queueing Network
In this section, we derive the mean visit counts
for the resources in the queueing network using
the parameters presented in the previous section
and the algorithm description of Section 2.1. Let:

|Ro| = the size (in pages) of the in-memory portion
of R during phase 0

|R'| = the number of pages of R that are written
to the disk

|S'| = the number of pages of S that are written
to the disk

B = the number of buckets for each input relation,

excluding the in-memory bucket
In terms of these quantities, the numbers of visits to the

CPU and disk for each customer class are given in Ta-
ble 3. Note that the number of visits by class ¢ to center

k is denoted by V., where k is either the CPU or the
disk.

Visit Class (c)
Counts 1 2 3 4 5 6
Veopu || |RI [ [R]PIS] S]] ]S]
Vepisk || [BI | [R] | S| | IS | [R] ] |S]

Table 3: Visit Counts for the Queueing Model.

For the workloads considered in the simulation exper-
iments that we have used to validate the model, all of
the R and S tuples participate in the join, i.e. the se-
lection predicate applied by the scan process does not
eliminate any tuples. In this case,

[R'| = R| - |Ro|

The values for the quantities |Ro| and |S'| are com-
puted as follows [Sha86, HCL93]. During the processing
of partition 0, the building relation R has to be scanned
and B buckets of relation R have to be written to the
disk. If we assume one input buffer for reading R and
one output buffer for each of the B buckets, we have
Sizemem — B — 1 pages for holding the hash table for
partition 0 of R. In phases 1..B of the algorithm, we
will have Size,em — 1 memory pages for holding the
hash table (with one page being reserved for the input
buffer). Thus, taking hash table overheads into account,
the optimal value of B will be the smallest value satis-
fying the equation:

Sizemem — B — 14+ B X (Sizémem — 1) > |R| X Fhash
which yields
‘R| X Fhosh — Stzemem + 1
B =
|-< Sizemem — 2 1
and
Sizemem — B — 1
Ryl =
Rl = (S =Bl

Assuming that the fraction of tuples in S that hash
to buckets 1 through B is the same as the corresponding
fraction of tuples in R,

8" =T1S| x &

3.3.2 Disk Response Time Equations

To reflect the read/write disk interference patterns
and the non-uniform average seek times described in
Section 2.2, we modify the standard MVA response time
equations for the disk as described below. The notation
used in this section is given in Table 4.

Twrite includes the average rotational latency, the
settle time, and the time required to transfer a page
during a disk write. Since a disk read-miss reads a to-
tal of Fjrcr pages, the transfer time in Treqq represents
the time for transferring all of these pages. Since %
represents the number of read—misses in the Phase—0—
build, w represents the ratio of writes to read misses in
this phase. Ratio% represents the fraction of write re-
quests that incur extra seek time due to an interfering
read—miss. Again, since the scan process is I/O bound,



Symbol Meaning Value
Twrite Average disk access time for a write (excluding seek time) Lot 4 Toespte + T fer
TRead Average disk access time for a read—miss (excluding seek time) Lrot 4 Tueptte + Toger X Fpres
w Ratio of writes to read misses %
Ratio rm fraction of write requests that find the arm over the read cylinders | min (1, %)

w
Ratio% fraction of read requests that find the arm over the write cylinders | min (1,w)
Ratiow # writes between two reads %

R

. . . maz[0,w—1]

few Fraction of writes that occur consecutively a1
Seeky_o—p | Average seek time of an interfered disk request in a Phase-0-Build | \/AvgSeekpr_o_B X Fscek
Seeky_o—p | Average seek time of an interfered disk request in a Phase-0-Probe | \/AvgSeekpr_o_p X Fscek
Seekcw Average seek time seen by consecutive writes in a Phase-0 VAvgSeekcw X Fieer

Table 4: Notation for the Disk Response Time Equations.

we assume that writes are interleaved with reads in an
approximately uniform way. If % > 1, there is (on aver-
age) more than one read miss between two writes. Since
only the last read-miss interferes with the write, we take
the minimum of % and 1 in computing mtio%. Simi-
larly, Ratio Jw_ represents the fraction of read—miss re-
quests that incur extra seek time due to an interfering
write. Furthermore, since most writes cause a read to
queue (recall Figure 2), Ratio% represents the frac-

tion of read requests that have to queue behind a write
request. Note that Ratio% is always less than one

since the number of reads always exceeds the number
of writes. If the number of writes exceeds the number
of read—misses, there will be sequences of writes that
are not interfered with by read—misses. However, these
writes are to random bucket files, as opposed to consec-
utive read operations, which are sequential. Thus, fow
of the writes incur a relatively low seek cost equal to
Seekow.

To explain the last three terms of Table 4, we must
consider the particular placement of data on disk. For
the experiments in Section 4, we will assume that the
building and probing relation files are laid out on the
disk in file groups as shown in Figure 5. A file group
consists of a collection of files of the same size, and input
relation files are randomly picked from the files in their
file group. Thus, the building relation R is randomly
chosen from the building file group while the probing re-
lation S is randomly chosen from the probing file group.
The bucket files produced during the join are written at
the end of the disk. Knowing the layout of the files,
the average seek distances for interfered disk requests
can be estimated as indicated in Figure 5. For phase—
0-build, the estimated seek distance includes half of the
cylinders in the building file group, all of the cylinders in
the probing file group, and half of the cylinders used for
the bucket files. For phase-i, the average seek distance
is estimated as % of the total number of cylinders used
for writing the bucket files [BG88]. (Although here we
assume detailed knowledge of the data layout, we will
show later that the model is quite accurate even when
knowledge of exact file locations is not assumed.)

Given the notation and calculations described above,
the disk response time equation for phase-0-build is de-

Average seek distance
of an interfered disk
equest in Phase-0-Build

Average seek distance
of an interfered disk
request in Phase-0-Prob

(AvgSeek en-o-v )

File group for the building relation (R) ~/\Verage See_k dist_ance
(e group 9 ® of consecutive writes

[_JFile group for the probing relation (S)  in Phase-0
[ Bucket Files (partition 1..N) (AngeekCW

Figure 5: File layout and average seek distances.

rived as follows. First, the average time that it takes to
service a read—miss is:

SreadMiss = TRead + Ratiow X Seeks o-p (2)
where Tgreqq includes the rotational latency, settle time,
and transfer time, and the second term represents the
average seek time. Similarly, the average time that it
takes to service a write request, including the seek time
for consecutive writes, is:

Swrite = Twrite + Ratio% X Seek¢,0,B

+fow x Seekcw (3)
We can now express the disk response time equations
for classes 1 and 2, in terms of Syeqdnriss and Syrite, as
follows: g _
RLDish = ZreadMiss + Ratiow X Syrite (4)
FWEf "
R27Disk = Suwrite + Ratio% X SreadMiss (5)
Both response time equations have two parts: the
time required to perform the disk I/0, and the time
spent waiting in the disk queue. The queueing time
of a read at the disk in equation ( 4) is estimated as
Ratio% X Syrite because most writes cause a read to
queue (refer to Section 2.2). Ratiow gives the fraction
of reads that queue behind a write, while Sy, ,ite gives the
queueing time of such read requests. Similarly, in equa-
tion 3, Ratio% X SreadMiss gives the average queueing
time of a write at the disk.
Disk response time equations for classes 3 and 4 in
phase-0-probe (R3, pisk, and R4, pisk) can be derived sim-
ilarly. The only changes required are using |S| instead



of |R| and |S'| instead of |R’'| in computing the ratios,
and using Seeky_o_p instead of Seeky_o_p.

Since phase—i consists only of disk reads that are
largely sequential, the mean phase-i disk response times
can be estimated as:

Tread

Fpres
3.3.3 Per Visit CPU Service Requirements

To compute the CPU service requirements, we first
calculate the number of tuples per page as:

Ntuples = LSizet . (7)
uple

Using this and the other input parameters listed in
Tables 1 and 2, the per visit CPU service time require-
ments can be expressed by the following equations:

(6)

Rs pisk = Re,pisk =

Sizepage

Rf,vCPU :Rg,chU
= (Nyupies X Sizepupre X Ieopy) [MIPS
+ (Ntuples X Isep + Isend) /MIPS
Rg,UCPU = (Irecv + Neuptes X (Iset + Thasn)) /M IPS

jo)ch = (IstartIO + Ntuples X (Isel + Ihash)) /MIPS

The service requirements R}'cpy and Rf'opp are
similar to Rj'pr; and RE',pp;, respectively, with the
only difference being that the term I, is replaced by
Iprobe .

4 Validation of the Model

In this section, we first evaluate the accuracy of our
base analytical model by comparing it against a detailed
simulation of a database system. We then describe the
results of several experiments where we change some of
the model assumptions. Finally, we compare the model
with two previous models and highlight the differences
in their accuracy.

4.1 Simulation Model

The simulator that we used for validating our analytical
model, ZetaSim [Bro92], is a detailed simulation model
of the Gamma parallel database machine [DGS*90]. For
the purpose of validating the analytical model, the sim-
ulated system is configured with a single node consist-
ing of one CPU and a 1.2GB disk, which is similar to
the configuration used to study memory management
issues in [BCL93]. The parameter settings of the sim-
ulator are listed in Table 5. The parameters for the
disk closely match the characteristics of a Fujitsu disk
model M2266, while the instruction counts are largely
based on measurements from the Gamma database ma-
chine implementation. The simulation model includes
details of data placement, buffer management, the el-
evator disk scheduling algorithm, disk cache behavior,
and so on [Bro92, BCL93].

For validation purposes, the relations were laid out
on the disk in two file groups, the building and probing
groups, as assumed in the analytical model (see Fig-
ure 5). We varied the size of the relations in the file
groups while keeping the total size of each file group at

Hardware Parameters Value
Mips rating of the CPU 20 MIPS
Page size (in bytes) 8192
Main memory size (in pages) 4096
Size of buffer between the join and

the scan processes 8 pages
Disk size 1.2GB
Additional number of pages

prefetched by a disk read 4
Seek factor 0.617
Maximum rotational latency time 16.667 ms
Transfer rate 3.09 MB/sec
Settle time 2.0 ms
Algorithm Cost Parameters Value
Hash factor 1.2
Tuple size (in bytes) 200
# instr to initiate a page send 1000
# instr to initiate a page receive 1000
# instr for applying the select pred. | 300
# instr for inserting a tuple into

the hash table 100
# instr for probing the hash table 200
# instr for a byte copy 1
# instr for starting a disk I/0O 1000

Table 5: Simulation Parameters.

0.5 GB. Since the largest relation that we evaluate has
500K tuples (= 100MB), the configured disk of size of
1.2GB was sufficient for joining the relations. The sys-
tem workload consists of a single join query which ran-
domly chooses its building and probing input relations
from the corresponding file groups. Workloads similar

to this were used in [BCL93, MD93].

4.2 Results of the Validation

In our initial model validations, we let the build and
probe relations be of equal size. The graphs in Fig-
ures 6 to 9 compare various measures estimated by the
analytical model and by the simulator as the size of the
relations is varied. A key point to note in each of the
graphs is that there is a discontinuity in the curve at
the point where the build relation becomes too large to
fit in memory (i.e., just after 100K tuples). Figure 6
gives the overall join execution time predicted by the
model and by the simulation, showing that the overall
predictions of the analytical model are highly accurate.

Looking at a more detailed measure, Figure 7 shows
that the qualitative behavior of the mean response time
for disk write operations in phase 0 is also accurately
predicted by the analytical model; however the model
overestimates the mean write response time in the probe
part of phase 0 for relation sizes that are slightly larger
than the allocated memory. The reason for the model
overestimating the write times for these relation sizes
is as follows. In the response time equations for the
disk (equation 3), we assumed that the queueing time
of a write behind a read—miss is nearly the same as the
read access time. This is not entirely true for small re-
lations; small relations have few buckets and hence do
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relatively few writes per read. In this case, the join may
process many pages before filling up one of its output
buffers, and the resulting write may therefore arrive sig-
nificantly after the start of the read access. Thus, the
difference in time between the arrival of a read—miss and
a write may be much greater for small relations than for
larger relations. However, it is not necessary to derive a
more complex expression to correct this discrepancy in
the model — for these relation sizes the scan process is
slower than the join process, so the scan determines the
overall execution time. Mean disk read response time
is modeled accurately for the scan process at all rela-
tion sizes (as discussed next). For larger relation sizes,
the join process is the slower process and determines
the overall join execution time; in this case, the mean
disk write response times are accurate, as can be seen
in Figure 7.

Asg shown in Figure 8, the mean response times pre-
dicted by the model for disk read operations in phase—0
match closely with those of the simulator over the entire
range of relation sizes examined. The match is particu-
larly close for smaller relation sizes, where (as mentioned
above) these read response times partially determine the
total execution time. Finally, Figure 9 shows the mean
response time for read operations in phases other than
phase 0. The model assumes that reads are sequential
and hence estimates a constant read time for phase—i
(see equation 6). However, the reads of the bucket files
may involve small seeks, as the pages for the bucket files
are allocated by the simulated system in extents. These
extents may not be contiguous, leading to occasional
inter—extent seeks that our analytical model does not
account for.

To test the robustness of the model, we carried out a
few additional experiments where we changed some of
the model’s assumptions.

In the first of these experiments, we modified the as-
sumption of how files are laid out on disk (refer to Sec-
tion 3.3). While the data for the base relations in a
complex multi-join query may be laid out in a particu-
lar known fashion, the location of intermediate relations
created during multi-join query processing may not be
known a priori. For this experiment, the building and
probing relations are again assumed to be of the same
size, but are selected randomly from a single file group of
size 1 GB, which is again populated with relations of the
specified size. The modifications required in the analyti-
cal model are in the seek times used in the disk response
time equation in phase-0 (equations 2 through 3). In
this case, the arm seek in each part of phase 0 is equal
to the average of the values that we used previously for
phase-0-build and phase-0-probe (i.e., Seeky_o—p and
Seeky_o—p). The join execution times predicted by the
model for this experiment matched the simulation es-
timates even more closely than in Figure 6. Since the
curves are very similar to those in Figure 6, and space
is limited, we do not include the graph here.

In the experiments thus far, the building and prob-
ing relation have both been of the same size. We now

present an experiment where we vary the relative size
of the building and probing relations. For this experi-
ment, we used building and probing file groups of the
same size (about 0.5 GB each). We fixed the building
relation size to 250K tuples (50 MB), which is consid-
erably larger than the size of the main memory hash
table, and varied only the probing relation size. Fig-
ure 10 shows the join execution times from the model
and the simulator; the x—axis in this graph represents
the size of the probing relation (S). As can be seen
from the graphs, the predictions of the model are again
in close agreement with the results of the simulator.

4.3 Comparison With Previous Join Cost
Models

To further illustrate the value of our relatively complete
analytical model, we next compare this model with two
previous hash join cost models. We use the same pa-
rameter values for all of the models, namely the values
listed in Table 5, and we let the two input relations have
equal size for these experiments.

The first model for comparison is the one proposed
by Shapiro [Sha86]. Using the notation defined in this
paper and letting 7O denote the average time for an I/0

request, and ¢ denote the ratio ‘ﬁ%‘ , the hybrid hash cost
derived in [Sha86] is:
Costs = (|R]+|S]) x Niuptes X Thash +
+ (IR + |S]) X Niuptes % (1 —q) X
Toopy X Sizeiyple
+2x (|R|+|S]) x (1 —¢q) x IO
+ (IR + [S1]) X Ntuptes X (1 = q) X Inasn
+ |R| X Niupies X Icopy X Sizeiypie
+ |S| X Niupies X Frash X Iprobe (8)

Because the costs derived in [Sha86] were used for com-
paring alternative join algorithms, they did not include
the I/0 costs for reading the base relations (which were
the same for all join algorithms). To reflect the total cost
of the join, we add this additional cost, (|R|+|S]) x IO,
to the above formula. Also, to be precise, we compute
IO to be the arithmetic mean of the following two quan-
tities:

Treud + \/% total # cylinders X Fyeep,

10 ead —
Read Fores

and :
I0write = Twrite + \/gtotal # cylinders X Fgeer, (10)

The other model that we compare our results to is
the one recently developed by Haas et. al. [HCL93].
This model, which we shall refer to as the HCL model,
estimates the cost of the join by computing the num-
ber of seeks (Ng), the number of (possibly multi-page)
1/0’s (N;o), and the number of page transfers (N,), and
then multiplying each of these counts by the cost of the
corresponding action (T, T;, and T,,). The HCL model
has input parameters for the size of the input and the



output buffers. Since four pages are prefetched by the
disk on every read (refer to Table 5), we set the input
buffer size to five>. The output buffer size is one. Using
the notation in Table 5, the various terms in the HCL
cost model are computed as follows:

T, = 252ms(Tyfer = 3.09Mb/s, Sizepage = 8K B)
Trot
Tw — T (11)
1 .
s = \/§ total # cylinders X Fieep (12)
N, = |R|+|S|+2x|R'|+2x|S]
|R| R 5] 15| 5]
Nio = [ 1+ 4 [+ [ + B+ [
L L R A Y R A
R S’
N, = 2+[‘1—‘]+f¥]+2xB

The cost of the join, Costgcr, is then given by
Costgcr, = Ny X Ty + Njo X Tio + Ny x T

The results of the three models for various input re-
lation sizes are shown in Figures 11 and 12. As can be
seen from equation 8, the disk cost in the Shapiro model
is based solely on the number of pages transferred from
the disk. The effect of interference between reads and
writes is not considered. Also, a simple average I/0O
cost is used in the model; the model does not account
for sequential I/Os. As a result, the Shapiro model over-
estimates the join cost. The HCL model treats the disk
costs more carefully than the Shapiro model. However,
since it does not consider the effect of intra—operator
contention, it ends up under—estimating the cost of the
join, as shown in the figures. Note that the error in the
Shapiro model is 193% at relation size 100, and that the
absolute error increases for relation sizes beyond 150.
Note also that the error in the HCL model is as high as
38% (at relation size 150), and that the absolute error
increases (gradually) as the relation sizes increase.

The reason that the HCL model does not consider
interference between reads and writes is that they as-
sumed (for simplicity) a disk configuration in which the
bucket files are on a separate disk from the base relation
files (R and S). In the next experiment, we adapt our
model to this configuration and again report the com-
parison. Here we will assume that the base files are held
on a 1GB disk and that the bucket files are written to
a separate 200 MB disk.

The cost formula for the Shapiro model here is simi-
lar to the one used in the previous experiment, except
that we now use the total number of cylinders in the
200MB disk for computing the seek time in IOwy,ite
(equation 10) and the total number of cylinders in the
1GB disk in computing IO g..q (equation 9); the two are
then averaged, as before, to compute the average I/0
cost term. Similarly, for the HCL model, the number of
cylinders in the 200MB disk was used in equation 12 for
computing the seek cost T5.

5The HCL model does not consider disk caching precisely, but set-
ting the input buffer size to five models the effect of reading five—page
blocks.

The changes required for our own model in this case
include setting Seekcw to represent the average seek for
the writes on the 200MB disk and removing the queue-
ing terms from the disk response time equations, yield-
ing

SreadMiss TRead
Swrite = Twrite + 1.0 x Seekcw
_ SreadMiss
Rl,Disk - T
Fprey
R2,Disk Swrite

The results of this final comparison are shown in Fig-
ure 13. The Shapiro model behaves in the same way
as before, while the HCL model and our model match
surprisingly closely. One would have expected the join
times estimated by the HCL model to be lower than the
join times of our model, as the HCL model does not
include CPU costs. Moreover, as shown in Figure 14,
which plots the CPU cost for performing a join as a per-
centage of the total join execution time, the CPU cost
can be significant. ¢ (The CPU cost that contributes to
the total join execution time in our model is estimated
in Figure 14 by adding the CPU costs of the slower
process in each phase.) Another modeling difference,
however, is that the HCL model does not consider the
intra—operator parallelism that arises here with two pro-
cesses (joins and scans) being simultaneously active in
the system. As an example, in counting the number of

I/0s (Njo), the HCL model adds together the I/Os for

reading the building relation ([‘—?‘]) and for writing the

bucket files ([@J]) However, these I/Os could be oc-
curring in parallel, as they are issued to different disks.
Our model captures the intra—operator parallelism by
separately accounting for the two processes (the joins
and the scans) and using the process model to predict
the final execution time. For the system parameters
used here, the HCL model’s overly high I/O cost esti-
mate, due to not considering the intra—operator paral-
lelism, seems to offset its lack of a CPU cost component.

5 Conclusions and Future Work

In this paper we have developed an analytical model of
the execution time for the hybrid hash join algorithm in
the case of a single join running stand-alone on a sin-
gle node. Even this simple case required that complex
behavior be accounted for, including intra-operator disk
interference patterns, disk seek times that are influenced
by file placement as well as interference, intra—operator
synchronization, and caching of disk pages. Through
comparisons with results from a detailed database sys-
tem simulator, the model was shown to be highly ac-
curate — not only in predicting overall join processing

SThe CPU contributions, shown in Figure 14, are high for joins of
small relations because the building relation can be held entirely in
memory. Since the reads are sequential and not interfered with in this
case, the cost of reading a page is small; the CPU time thus becomes
comparable to the disk time. Beyond a size of 100K, however, the
building relation is too big to fit in memory and bucket writes are
incurred. Since writes take longer than reads, the contribution of the
CPU cost as a percentage of the total join cost then decreases.



times, but also for more detailed performance measures
such as I/O response times. The model was also shown
to be more accurate than previously published join cost
models.

It is interesting to note that, in the course of devel-
oping and validating the analytical model, various as-
sumptions that were made implicitly when building the
simulator were exposed and reexamined. In some cases,
the simulator was modified as a result of these reflec-
tions. As one example, the simulator initially assumed
that the buffer used for communication between the scan
and join processes was unbounded. As another exam-
ple, it assumed that tuples could span page boundaries
(i.e., that a 200 byte tuple could have its first 50 bytes
on one page and the remaining 150 bytes on the next
page). While simulations are often used to validate an-
alytical models, these sorts of assumptions are easily
overlooked when implementing a simulator. Thus, it is
important to note that analytical models can actually
be quite useful for improving confidence in the validity
of the simulator (rather than only the vice versa).

The model that we have developed thus far is intended
primarily as a proof of concept and as a starting point
for developing models for studying query scheduling and
memory management strategies for multiprogrammed
systems and/or parallel systems. As pointed out in the
Introduction, accurate and efficient analytical models
of such systems would facilitate a more complete explo-
ration of the system design space as well as enabling
the study of very large systems. As an example of how
much more efficient analytical models might be, a sin-
gle data point for the case of joining two 500K tuple
relations (in Figure 6) required approximately 29 min-
utes to simulate; evaluating the analytical model took
only 0.75 milliseconds for the same case. (Note that we
ran the join 20 times in the simulation and then aver-
aged the resulting join execution times.) Moreover, the
system that we were simulating was relatively simple,
consisting of a single node and a small amount of main
memory (4096 8K pages), and the cost of simulation
grows rapidly as systems become more complex.
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