
Accurate Modeling of The Hybrid Hash Join Algorithm�Jignesh M. Patel Michael J. Carey Mary K. VernonComputer Sciences Department,University of Wisconsin, Madisonfjignesh, carey, vernong@cs.wisc.eduAbstract: The join of two relations is an important oper-ation in database systems. It occurs frequently in relationalqueries, and join performance is a signi�cant factor in over-all system performance. Cost models for join algorithms areused by query optimizers to choose e�cient query execu-tion strategies. This paper presents an e�cient analyticalmodel of an important join method, the hybrid hash join al-gorithm, that captures several key features of the algorithm'sperformance { including its intra{operator parallelism, inter-ference between disk reads and writes, caching of disk pages,and placement of data on disk(s). Validation of the modelagainst a detailed simulation of a database system showsthat the response time estimates produced by the model arequite accurate.1 IntroductionRelational database systems organize information into acollection of tables. The relational join operator is usedto relate information from two or more tables. Thus,joins are a frequently occurring operation in relationalqueries. Additionally, joins are one of the most expen-sive operations that a relational database system per-forms. Joining two large tables can consume a signif-icant amount of the system's CPU cycles, disk band-width, and bu�er memory. For this reason, e�cient joinalgorithms are a critical factor in determining relationaldatabase system performance.Accurate and e�cient join algorithm cost models arealso important, as they are needed by relational queryoptimizers (which employ cost-based optimization algo-rithms) in order to derive e�cient processing plans forrelational queries. Furthermore, simulation is currentlyused extensively for studying parallel execution strate-gies for complex queries [CLYY92] and for evaluatingstrategies for handling complex multiuser workloads incentralized database systems [BCL93, MD93]. Mostsimulation studies of parallel database systems havenot explored truly large systems (e.g. 100's of nodes)due to the prohibitive costs of simulating such systemsin detail. If accurate analytical models could be de-veloped, such scheduling strategies could be evaluated�This work was partially supported by the IBM Corporationthrough a Research Initiation Grant, and by the NSF Grants CCR9024144 and CDA 9024618.

more quickly and over wider regions of the system de-sign space, including more realistic system sizes. As astarting point, accurate analytical models that capturecentralized query performance are required. Our focushere is the development of such a model for the hybridhash join algorithm that was introduced in [DKO+84].Simple analytic cost models for hash based join algo-rithms were �rst presented in [DKO+84, Sha86]. Thesemodels only count the total number of page I/O opera-tions in the algorithm. A more complete model, recentlypresented in [HCL93], breaks up the cost of perform-ing disk I/O operations into various parts and carefullycounts each part. However, intra{operator disk con-tention and CPU costs are not addressed in this model.In [LY90], the authors investigated the e�ectiveness ofparallel hybrid hash join algorithms for a system run-ning a single join. However, their model of the individ-ual processing nodes is quite simplistic, e.g., it does notconsider the impact of intra{operator disk contention.This paper develops an accurate model of the hybridhash join algorithm that includes these costs and is nev-ertheless e�cient to evaluate.We develop an analytical model of the hybrid hashjoin algorithm for the case of a single join operation,implemented using two processes, running on a singlenode of a database system. This situation presents twoparticular challenges for creating an accurate analyti-cal model. First, the intra-operator disk interferencepatterns are more complex to analyze than the ran-dom interference that typically occurs between unre-lated processes. Second, disk seek times are inuencedby �le placement as well as by interference. The modelalso captures other signi�cant system behavior, suchas intra{operator synchronization and caching of diskpages, which also a�ects the performance of the algo-rithm. Our model is based on the approximate mean{value analysis, an approach that has proven accurate inmodeling parallel architectures [VLZ88, WE90, CS91].Speci�c system e�ects are captured by modifying the re-sponse time equations. Validation of the model againstthe simulator used in [BCL93, MD93] shows that themodel yields accurate results.The remainder of the paper is organized as follows:Section 2 describes the hybrid hash join algorithm. Sec-tion 3 describes the analytical model for the hybrid hashjoin. The results of the validation of the model andseveral other experiments, including a comparison withprevious models, are described in Section 4. Finally,Section 5 contains our conclusions.



2 BackgroundThe tables in a relational database system are calledrelations. Each relation is structured as a set of tu-ples, with each tuple consisting of an ordered list ofattributes. A (binary) join operator, one of the funda-mental operations in a relational database system, re-lates tuples from two relations by matching one or moreattributes of the tuples according to some speci�ed con-dition. For example, the condition for the equijoin op-erator, by far the most common form of join, is that theattribute values be equal.Various join algorithms have been proposed for per-forming the equijoin operation [ME92, Gra93]. In somecases, the process of matching tuples is made fasterby the existence of an access structure, such as a B-tree [Com79], on the join attribute of one of the rela-tions. However, in the case of an unanticipated join,or when the relations to be joined are both very large,an ad hoc join algorithm is normally used. More-over, as database sizes increase, and interest in run-ning complex decision support queries grows, the im-portance of e�cient ad hoc join algorithms continuesto increase. Sort{merge and hash based join algo-rithms [BE77, Bra84, DKO+84, Sha86] are favored forad hoc joins. A hash based algorithm known as hybridhash has been shown to be particularly e�ective for per-forming ad hoc joins [DKO+84, Sha86]. The details ofthis algorithm and key aspects of its implementation arediscussed in the next two sections.2.1 The Hybrid Hash Join AlgorithmHybrid hash, like other hash{based join algorithms, useshashing to improve the speed of matching tuples. Thatis, hashing is used to partition the two input relationssuch that a hash table for each partition of the smallerinput relation can �t in main memory. Correspondingpartitions of the two input relations are then joined bybuilding an in{memory hash table for the tuples fromthe smaller input relation, and then probing the hashtable with the tuples from the corresponding partitionof the larger input relation.The tasks involved in a hybrid hash join are frequentlyimplemented as a collection of processes, particularlyin parallel database systems [DG92]. One bene�t ofdoing so is that the construction (and later probing)of the hash table for a given join operation can pro-ceed in parallel with the reading of the input relationsfrom disk. A more substantial bene�t, particularly forcomplex queries, is that scalable parallel data ow im-plementations are possible. For example, the tasks ofreading the input relations and of building/probing thehash table can each be implemented as a set of paral-lel processes, with each process running on a separatenode. Each process in the set performs the same task ondi�erent data (e.g., the data that is stored on its node),passing its output tuples to the process responsible forperforming the next task on those tuples. In a paralleldatabase system, such a multiple process implementa-tion allows for pipelining between multiple join opera-tors. For these reasons, we will focus our attention here

on the multiple process implementation of the hybridhash algorithm.The details of the hybrid hash join algorithm for acentralized database system, or for a node of a paralleldatabase system, are as follows. Let R and S be the twoinput relations to be joined and let jRj and jSj denotethe number of pages in each relation. Without loss ofgenerality, we assume that jRj � jSj. The smaller re-lation, R, is called the building relation, and the largerrelation, S, is called the probing relation. The join isimplemented by two processes, a scan process and ajoin process.1 The scan process reads pages from theinput relations and passes them to the join process viaa bu�er.2 Frequently, join queries also involve selectionpredicates that restrict the tuples of the base relations(R and S) that participate in the join. When such predi-cates are present, the scan process applies the predicatesto the tuples of the input relations and only passes onthose tuples that satisfy the predicates.Let B + 1 be the number of partitions of each in-put relation. The join process divides the two relationsinto these partitions and then processes each partition.The execution of the join proceeds in B+1 consecutivephases, with each phase having two consecutive opera-tions called the build and probe operations. Phase 0 isillustrated in Figure 1. In the �rst part of this phase(phase-0-build), the scan process scans the pages of thebuilding relation R and applies any selection predicate.Tuples that satisfy the predicate, and are thus eligiblefor the join, are bu�ered and passed to the join processin page-size chunks. The join process reads the pagesfrom the bu�er and hashes each tuple to a value between0 and B. Tuples that hash to the value 0 are insertedinto an in{memory hash table. Tuples that hash to thevalues 1..B are written to a page-sized output bu�erthat is allocated for that partition. Each of the parti-tions, 1::B, has a �le on disk (called a \bucket �le") towhich the corresponding output bu�er page is ushedeach time it becomes full.In the second part of phase 0 (phase-0-probe), thescan process scans the probing relation S, applies anyselection predicate, and writes the selected tuples to thebu�er. The join process reads pages from the bu�er andapplies the same hash function used in phase-0-build. Ifa tuple hashes to the value 0, the join process probes thein{memory hash table for matching tuples and outputsany matching tuple pairs; these constitute the result ofthe join. The join process writes tuples that hash tothe values 1::B to the appropriate output bu�er pages,which are ushed to corresponding S bucket �les on diskwhen full.At the end of phase-0, the R and S tuples in partition1Actually, the join is usually implemented by three processes { ascan process for each of the input relations and a join process. How-ever, the two scan processes are used serially. Hence, conceptuallyand for the purpose of modeling, we can treat the two scan processesas a single process with a synchronization step in the middle.2For an implementation of the hybrid hash join on a paralleldatabase machine, the join and scan processes may be on di�erentnodes. In that case, the bu�er is used for sending and receiving pagesover the network.



0 have been joined and the remaining tuples are waitingin appropriate pairs of bucket �les on disk. In each ofthe remaining B phases, the corresponding partitions ofthe building relation R and the probing relation S arejoined by the join process. Each phase-i (1 � i � B) hastwo parts, phase{i{build and phase{i{probe. In phase{i{build, the join process reads the ith partition of thebuilding relation R from disk, one page at a time, andbuilds an in{memory hash table containing its tuples.The join process then moves to phase{i{probe, whereit reads the ith partition of the probing relation S onepage at a time. For each tuple in the partition, the joinprocess probes the in{memory hash table for matches,and it appends any matching tuple pairs to the resultof the join.
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Figure 1: Phase-0 of the hybrid hash join.It should be noted that if the hash function used bythe join results in a non-uniform distribution of tuplesacross the B + 1 partitions, then some partitions maynot �t entirely in main memory. This may happen if thehash function is imperfect or if the values of the join at-tribute in the building relation R are skewed. To handlemost such cases, the database system typically allocatesa few extra pages to the hash table (i.e., it plans fora small number of overow pages when deciding howmany partitions are needed). Techniques for handlingmore signi�cant data skew while joining two relationsare discussed in [Sha86, KNT89]. The model developedin Section 3 assumes that no partitions overow, but itcould be extended to model overows if desired.2.2 Salient Aspects of the AlgorithmIn this section we discuss several special characteristicsof the implementation of the algorithm that must beconsidered when constructing the model.First, the bu�er that is used for passing pages betweenthe scan and join processes (illustrated in Figure 1) is of�nite size. As a result, in phase{0, the scan process mustblock whenever this bu�er is full. Furthermore, the scanprocess can never get more than N pages ahead of thejoin process (where N is the size of the bu�er in pages).

Second, to reduce the cost of sequential reads, disksoften have a disk cache for prefetching data. With adisk cache of size K, a disk read can prefetch up toK sequential blocks of additional data when processinga read request. Subsequent sequential reads will �ndthe requested data in the disk cache and will not haveto actually perform a disk I/O. Furthermore, in currentsystems, disk scheduling is done by the operating system(which does not know which pages are available in thedisk cache). Thus, all read requests will actually queuefor the disk, but requests that are serviced from thedisk cache complete quickly once the read request isissued. (Future disk controllers may become responsiblefor disk scheduling and may eliminate the unnecessaryqueueing.)Third, the placement of �les on the disk(s) can have asigni�cant e�ect on the execution time of the join. If theinput relations (R and S) and the temporary bucket �lesare on the same disk, then typically the input relationsare read from one cylinder while the bucket �le pagesare written on another cylinder. Compared to the casewhere a separate disk is used for the bucket �les, whena single disk is used the disk seek times can be highlynon-uniform and the disk arm may experience a lot ofmovement in phase{0. Speci�cally, read requests thatdo not have intervening write requests will have muchsmaller seek times than read requests that occur imme-diately after an intervening write request. The sameholds for write requests with and without interveningread requests. Thus, interleaved read and write requestsincrease each other's service times.3
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MissFigure 2: The Read/Write Interference Patterns.Finally, when the R and S data �les and the tempo-rary bucket �les are on the same disk, particular I/Ointerference patterns occur between the scan and joinprocesses in phase 0. These interference patterns areillustrated in Figure 2. Recall that in phase{0, the scanprocess repeatedly reads a disk page, applies a selectionpredicate to the tuples on the page, and then writesthe selected tuples to a bu�er. Thus, the scan performsvery little computation between two disk read requests.This implies that when a write operation queues be-hind a read request, it will cause the next read request(which will arrive very soon after the write is initiated)to queue for nearly the entire time of the write opera-tion. Furthermore, the read request behind which thewrite queues is likely to be a read{miss, because readhits have negligible service times. In addition, sincethe scan process is I/O bound, the write operation that3From this description, it would seem advantageous to use a sepa-rate disk for the temporary bucket �les, thereby avoiding interferencebetween the disk reads and writes. However, with current technologi-cal trends, a data placement strategy that fully declusters all (exceptfor very small) relations across all available disks actually achieves thebest performance [MD].



queues behind the read{miss is likely to queue for mostof the read access time. This scenario is depicted inFigure 2(a). Figure 2(b) shows the case where a writearrives at an idle disk; the write request will also causethe next read request (a read{hit or a read{miss) toqueue for nearly the entire write access time.3 The Analytical ModelThis section develops an approximate mean value anal-ysis (MVA) model of a single hybrid hash join queryexecuting on a stand{alone system consisting of a singleCPU and a single disk. The speci�c behaviors of theprocesses discussed in Section 2.2, such as their I/O in-terference pattern and the non-uniform seek times, arecaptured by modifying the MVA response time equa-tions. Twomodels, a process model and a systemmodel,are used to de�ne the behavior of the join. The processmodel is used to capture the overall synchronization be-havior of the processes as they move from one phase ofthe algorithm to the other, while the system model rep-resents the physical resources in the database system asservice centers in a queueing network.3.1 The Process ModelThe process model represents the process structure (i.e.,the phase behavior of the scan and join processes) in thealgorithm's implementation. Both processes are simul-taneously active throughout phase{0 of the join. Asexplained in Section 2, the scan process performs thedisk reads and does some computation on the tuples inthe pages read, while the join process performs othercomputation on the pages received from the scan andoccasionally writes data pages to the disk. The twoprocesses are modeled as two customers in the queue-ing network model, each in a separate class, switchingclasses as processing progresses from the build phaseto the probe phase. The class switching, illustrated inFigure 3, is necessary so that di�erent resource require-ments can be speci�ed in the di�erent phases. In phases1::B, only the join process is active, and there is no inter-ference from other customers; the time spent executingthese phases, denoted by D5 and D6, can be computedby simply summing their resource requirements.4
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is then estimated byR � max(R1; R2) +max(R3; R4) +D5 +D6 (1)We note that the overall mean response time (R) is anapproximation, as each of the �rst two terms is the max-imum of two mean response times (and not the mean ofthe maximum response time).3.2 The System ModelThe system that we are modeling consists of two re-sources, a CPU and a disk. The simple queueing net-work model that represents the system is shown in Fig-ure 4. The delay center in the network represents timeduring which either the scan process or the join processblocks due to synchronization on the bu�er that theyuse to communicate. A similar approach was used tomodel synchronization delays in [HT83]. The scan pro-cess blocks if the bu�er is full, whereas the join processblocks if the bu�er is empty, as described in Section 2.Since the processes are fairly tightly synchronized (i.e.,the size of the bu�er is assumed to be fairly small), weassume that in fact both processes complete almost si-multaneously. We thus determine the mean time at thedelay center for the faster process by iteratively solvingthe model and setting this value to the di�erence be-tween the estimated mean execution times of the twoprocesses. For example, in a phase where the join is thefaster process, a synchronization delay is added for thejoin; this delay is set to a value that makes the over-all mean response time of the join the same as that ofthe scan. The queueing network model is solved usingapproximate MVA techniques [RL80, LZGS84]. To cap-ture the speci�c interference patterns and service timesof the customers at the disk, we create customized re-sponse time equations for the disk requests. These cus-tomized equations are presented in Section 3.3.2.
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Figure 4: The queueing network model.3.3 The Queueing Model EquationsThe inputs to the model, shown in Tables 1 and 2, con-sist of the system hardware and the software parame-ters. The seek factor mentioned in Table 1 is a con-stant that, when multiplied by the square root of theseek distance (in cylinders), determines the seek time inmilliseconds [BG88]. The settle time is the average timethat it takes for the disk arm to settle over the appropri-ate cylinder after a seek. When the hash table of a par-tition of the building relation is formed, some additionalmemory is required due to data structure overhead (i.e.,this is additional memory beyond the space required tosimply hold the R tuples of the partition). The hashfactor in Table 2, Fhash, gives the factor by which thememory allocation is expanded. In other words, when



multiplied by the number and size of the tuples in the Rpartition being built, this factor gives the total amountof memory required for holding the partition's hash ta-ble. (Note that Fhash is sometimes referred to as the\fudge factor" in the database literature). Sizetuple inTable 2 gives the size of the R and S tuples in bytes.In general, of course, the tuple sizes of relations R andS will be di�erent; for simplicity, we assume here thatthe two relations have tuples of the same size, thoughgeneralizing the model in this regard is straightforward.The meanings of the remaining parameters should beclear from their descriptions in the tables.Symbol ParameterMIPS MIPS rating of the CPUSizemem Main memory size (in pages)Sizepage Size of a page (in bytes)Fseek Seek factorFpref Num. of pgs. fetched by a disk read(incl. the requested and prefetched pgs)Trot Maximum rotational latencyTxfer Transfer rateTsettle Settle timeTable 1: Hardware Input Parameters.Symbol MeaningFhash Extra space required by a hashed tupleIsend #instr to initiate a page sendIrecv #instr to initiate a page receiveIsel #instr for applying the selectpredicate to a tupleIhash #instr for inserting a tupleinto a hash tableIprobe #instr for probing the hash table onceIcopy #instr for a byte copyIstartIO #instr for starting a disk I/OSizetuple Size of a tuple (in bytes)jRj Size of the building relation (in pages)jSj Size of the probing relation (in pages)Table 2: Software Input Parameters.3.3.1 Estimating The Mean Visit Counts forthe Queueing NetworkIn this section, we derive the mean visit countsfor the resources in the queueing network usingthe parameters presented in the previous sectionand the algorithm description of Section 2.1. Let:jR0j = the size (in pages) of the in-memory portionof R during phase 0jR0j = the number of pages of R that are writtento the diskjS0j = the number of pages of S that are writtento the diskB = the number of buckets for each input relation,excluding the in-memory bucketIn terms of these quantities, the numbers of visits to theCPU and disk for each customer class are given in Ta-ble 3. Note that the number of visits by class c to center

k is denoted by Vc;k, where k is either the CPU or thedisk. Visit Class (c)Counts 1 2 3 4 5 6Vc;CPU jRj jRj jSj jSj jR0j jS0jVc;Disk jRj jR0j jSj jS0j jR0j jS0jTable 3: Visit Counts for the Queueing Model.For the workloads considered in the simulation exper-iments that we have used to validate the model, all ofthe R and S tuples participate in the join, i.e. the se-lection predicate applied by the scan process does noteliminate any tuples. In this case,jR0j = jRj � jR0jThe values for the quantities jR0j and jS0j are com-puted as follows [Sha86, HCL93]. During the processingof partition 0, the building relation R has to be scannedand B buckets of relation R have to be written to thedisk. If we assume one input bu�er for reading R andone output bu�er for each of the B buckets, we haveSizemem � B � 1 pages for holding the hash table forpartition 0 of R. In phases 1::B of the algorithm, wewill have Sizemem � 1 memory pages for holding thehash table (with one page being reserved for the inputbu�er). Thus, taking hash table overheads into account,the optimal value of B will be the smallest value satis-fying the equation:Sizemem �B � 1 +B � (Sizemem � 1) � jRj � Fhashwhich yieldsB = d� jRj � Fhash � Sizemem + 1Sizemem � 2 �eandjR0j = b�Sizemem �B � 1Fhash �cAssuming that the fraction of tuples in S that hashto buckets 1 through B is the same as the correspondingfraction of tuples in R,jS0j = djSj � jR0jjRj e .3.3.2 Disk Response Time EquationsTo reect the read/write disk interference patternsand the non-uniform average seek times described inSection 2.2, we modify the standard MVA response timeequations for the disk as described below. The notationused in this section is given in Table 4.TWrite includes the average rotational latency, thesettle time, and the time required to transfer a pageduring a disk write. Since a disk read{miss reads a to-tal of Fpref pages, the transfer time in TRead representsthe time for transferring all of these pages. Since jRjFprefrepresents the number of read{misses in the Phase{0{build, ! represents the ratio of writes to read misses inthis phase. RatioRMW represents the fraction of write re-quests that incur extra seek time due to an interferingread{miss. Again, since the scan process is I/O bound,



Symbol Meaning ValueTWrite Average disk access time for a write (excluding seek time) Trot2 + Tsettle + TxferTRead Average disk access time for a read{miss (excluding seek time) Trot2 + Tsettle + Txfer � Fpref! Ratio of writes to read misses jR0j�FprefjRjRatioRMW fraction of write requests that �nd the arm over the read cylinders min �1; 1!�Ratio WRM fraction of read requests that �nd the arm over the write cylinders min (1; !)RatioWR # writes between two reads jR0jjRjfCW Fraction of writes that occur consecutively max[0;!�1]max[0;!�1]+1Seek��0�B Average seek time of an interfered disk request in a Phase-0-Build pAvgSeekPh 0 B � FseekSeek��0�P Average seek time of an interfered disk request in a Phase-0-Probe pAvgSeekPh 0 P � FseekSeekCW Average seek time seen by consecutive writes in a Phase-0 pAvgSeekCW � FseekTable 4: Notation for the Disk Response Time Equations.we assume that writes are interleaved with reads in anapproximately uniform way. If 1! > 1, there is (on aver-age) more than one read miss between two writes. Sinceonly the last read-miss interferes with the write, we takethe minimum of 1! and 1 in computing ratioRMW . Simi-larly, Ratio WRM represents the fraction of read{miss re-quests that incur extra seek time due to an interferingwrite. Furthermore, since most writes cause a read toqueue (recall Figure 2), RatioWR represents the frac-tion of read requests that have to queue behind a writerequest. Note that RatioWR is always less than onesince the number of reads always exceeds the numberof writes. If the number of writes exceeds the numberof read{misses, there will be sequences of writes thatare not interfered with by read{misses. However, thesewrites are to random bucket �les, as opposed to consec-utive read operations, which are sequential. Thus, fCWof the writes incur a relatively low seek cost equal toSeekCW .To explain the last three terms of Table 4, we mustconsider the particular placement of data on disk. Forthe experiments in Section 4, we will assume that thebuilding and probing relation �les are laid out on thedisk in �le groups as shown in Figure 5. A �le groupconsists of a collection of �les of the same size, and inputrelation �les are randomly picked from the �les in their�le group. Thus, the building relation R is randomlychosen from the building �le group while the probing re-lation S is randomly chosen from the probing �le group.The bucket �les produced during the join are written atthe end of the disk. Knowing the layout of the �les,the average seek distances for interfered disk requestscan be estimated as indicated in Figure 5. For phase{0{build, the estimated seek distance includes half of thecylinders in the building �le group, all of the cylinders inthe probing �le group, and half of the cylinders used forthe bucket �les. For phase-i, the average seek distanceis estimated as 13 of the total number of cylinders usedfor writing the bucket �les [BG88]. (Although here weassume detailed knowledge of the data layout, we willshow later that the model is quite accurate even whenknowledge of exact �le locations is not assumed.)Given the notation and calculations described above,the disk response time equation for phase-0-build is de-
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Figure 5: File layout and average seek distances.rived as follows. First, the average time that it takes toservice a read{miss is:SreadMiss = TRead +Ratio WRM � Seek��0�B (2)where TRead includes the rotational latency, settle time,and transfer time, and the second term represents theaverage seek time. Similarly, the average time that ittakes to service a write request, including the seek timefor consecutive writes, is:Swrite = TWrite +RatioRMW � Seek��0�B+fCW � SeekCW (3)We can now express the disk response time equationsfor classes 1 and 2, in terms of SreadMiss and Swrite, asfollows:R1;Disk = SreadMissFpref +RatioWR � Swrite (4)R2;Disk = Swrite +RatioRMW � SreadMiss (5)Both response time equations have two parts: thetime required to perform the disk I/O, and the timespent waiting in the disk queue. The queueing timeof a read at the disk in equation ( 4) is estimated asRatioWR � Swrite because most writes cause a read toqueue (refer to Section 2.2). RatioWR gives the fractionof reads that queue behind a write, while Swrite gives thequeueing time of such read requests. Similarly, in equa-tion 3, RatioRMW �SreadMiss gives the average queueingtime of a write at the disk.Disk response time equations for classes 3 and 4 inphase-0-probe (R3;Disk and R4;Disk) can be derived sim-ilarly. The only changes required are using jSj instead



of jRj and jS0j instead of jR0j in computing the ratios,and using Seek��0�P instead of Seek��0�B.Since phase{i consists only of disk reads that arelargely sequential, the mean phase{i disk response timescan be estimated as:R5;Disk = R6;Disk = TreadFpref (6)3.3.3 Per Visit CPU Service RequirementsTo compute the CPU service requirements, we �rstcalculate the number of tuples per page as:Ntuples = b SizepageSizetuple c (7)Using this and the other input parameters listed inTables 1 and 2, the per visit CPU service time require-ments can be expressed by the following equations:Rpv1;CPU =Rpv3;CPU=(Ntuples � Sizetuple � Icopy) =MIPS+(Ntuples � Isel + Isend) =MIPSRpv2;CPU =(Irecv +Ntuples � (Isel + Ihash)) =MIPSRpv5;CPU =(IstartIO +Ntuples � (Isel + Ihash)) =MIPSThe service requirements Rpv4;CPU and Rpv6;CPU aresimilar to Rpv2;CPU and Rpv5;CPU , respectively, with theonly di�erence being that the term Ihash is replaced byIprobe .4 Validation of the ModelIn this section, we �rst evaluate the accuracy of ourbase analytical model by comparing it against a detailedsimulation of a database system. We then describe theresults of several experiments where we change some ofthe model assumptions. Finally, we compare the modelwith two previous models and highlight the di�erencesin their accuracy.4.1 Simulation ModelThe simulator that we used for validating our analyticalmodel, ZetaSim [Bro92], is a detailed simulation modelof the Gamma parallel database machine [DGS+90]. Forthe purpose of validating the analytical model, the sim-ulated system is con�gured with a single node consist-ing of one CPU and a 1.2GB disk, which is similar tothe con�guration used to study memory managementissues in [BCL93]. The parameter settings of the sim-ulator are listed in Table 5. The parameters for thedisk closely match the characteristics of a Fujitsu diskmodel M2266, while the instruction counts are largelybased on measurements from the Gamma database ma-chine implementation. The simulation model includesdetails of data placement, bu�er management, the el-evator disk scheduling algorithm, disk cache behavior,and so on [Bro92, BCL93].For validation purposes, the relations were laid outon the disk in two �le groups, the building and probinggroups, as assumed in the analytical model (see Fig-ure 5). We varied the size of the relations in the �legroups while keeping the total size of each �le group at

Hardware Parameters ValueMips rating of the CPU 20 MIPSPage size (in bytes) 8192Main memory size (in pages) 4096Size of bu�er between the join andthe scan processes 8 pagesDisk size 1.2GBAdditional number of pagesprefetched by a disk read 4Seek factor 0.617Maximum rotational latency time 16.667 msTransfer rate 3.09 MB/secSettle time 2.0 msAlgorithm Cost Parameters ValueHash factor 1.2Tuple size (in bytes) 200# instr to initiate a page send 1000# instr to initiate a page receive 1000# instr for applying the select pred. 300# instr for inserting a tuple intothe hash table 100# instr for probing the hash table 200# instr for a byte copy 1# instr for starting a disk I/O 1000Table 5: Simulation Parameters.0.5 GB. Since the largest relation that we evaluate has500K tuples (� 100MB), the con�gured disk of size of1.2GB was su�cient for joining the relations. The sys-tem workload consists of a single join query which ran-domly chooses its building and probing input relationsfrom the corresponding �le groups. Workloads similarto this were used in [BCL93, MD93].4.2 Results of the ValidationIn our initial model validations, we let the build andprobe relations be of equal size. The graphs in Fig-ures 6 to 9 compare various measures estimated by theanalytical model and by the simulator as the size of therelations is varied. A key point to note in each of thegraphs is that there is a discontinuity in the curve atthe point where the build relation becomes too large to�t in memory (i.e., just after 100K tuples). Figure 6gives the overall join execution time predicted by themodel and by the simulation, showing that the overallpredictions of the analytical model are highly accurate.Looking at a more detailed measure, Figure 7 showsthat the qualitative behavior of the mean response timefor disk write operations in phase 0 is also accuratelypredicted by the analytical model; however the modeloverestimates the mean write response time in the probepart of phase 0 for relation sizes that are slightly largerthan the allocated memory. The reason for the modeloverestimating the write times for these relation sizesis as follows. In the response time equations for thedisk (equation 3), we assumed that the queueing timeof a write behind a read{miss is nearly the same as theread access time. This is not entirely true for small re-lations; small relations have few buckets and hence do
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Figure 6: Join Execution Time(jRj = jSj) Figure 7: Disk Write Time forPhase{0 (jRj = jSj) Figure 8: Disk Read Time forPhase{0 (jRj = jSj)
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relatively few writes per read. In this case, the join mayprocess many pages before �lling up one of its outputbu�ers, and the resulting write may therefore arrive sig-ni�cantly after the start of the read access. Thus, thedi�erence in time between the arrival of a read{miss anda write may be much greater for small relations than forlarger relations. However, it is not necessary to derive amore complex expression to correct this discrepancy inthe model { for these relation sizes the scan process isslower than the join process, so the scan determines theoverall execution time. Mean disk read response timeis modeled accurately for the scan process at all rela-tion sizes (as discussed next). For larger relation sizes,the join process is the slower process and determinesthe overall join execution time; in this case, the meandisk write response times are accurate, as can be seenin Figure 7.As shown in Figure 8, the mean response times pre-dicted by the model for disk read operations in phase{0match closely with those of the simulator over the entirerange of relation sizes examined. The match is particu-larly close for smaller relation sizes, where (as mentionedabove) these read response times partially determine thetotal execution time. Finally, Figure 9 shows the meanresponse time for read operations in phases other thanphase 0. The model assumes that reads are sequentialand hence estimates a constant read time for phase{i(see equation 6). However, the reads of the bucket �lesmay involve small seeks, as the pages for the bucket �lesare allocated by the simulated system in extents. Theseextents may not be contiguous, leading to occasionalinter{extent seeks that our analytical model does notaccount for.To test the robustness of the model, we carried out afew additional experiments where we changed some ofthe model's assumptions.In the �rst of these experiments, we modi�ed the as-sumption of how �les are laid out on disk (refer to Sec-tion 3.3). While the data for the base relations in acomplex multi-join query may be laid out in a particu-lar known fashion, the location of intermediate relationscreated during multi-join query processing may not beknown a priori. For this experiment, the building andprobing relations are again assumed to be of the samesize, but are selected randomly from a single �le group ofsize 1 GB, which is again populated with relations of thespeci�ed size. The modi�cations required in the analyti-cal model are in the seek times used in the disk responsetime equation in phase{0 (equations 2 through 3). Inthis case, the arm seek in each part of phase 0 is equalto the average of the values that we used previously forphase{0{build and phase{0{probe (i.e., Seek��0�B andSeek��0�P ). The join execution times predicted by themodel for this experiment matched the simulation es-timates even more closely than in Figure 6. Since thecurves are very similar to those in Figure 6, and spaceis limited, we do not include the graph here.In the experiments thus far, the building and prob-ing relation have both been of the same size. We now

present an experiment where we vary the relative sizeof the building and probing relations. For this experi-ment, we used building and probing �le groups of thesame size (about 0.5 GB each). We �xed the buildingrelation size to 250K tuples (50 MB), which is consid-erably larger than the size of the main memory hashtable, and varied only the probing relation size. Fig-ure 10 shows the join execution times from the modeland the simulator; the x{axis in this graph representsthe size of the probing relation (S). As can be seenfrom the graphs, the predictions of the model are againin close agreement with the results of the simulator.4.3 Comparison With Previous Join CostModelsTo further illustrate the value of our relatively completeanalytical model, we next compare this model with twoprevious hash join cost models. We use the same pa-rameter values for all of the models, namely the valueslisted in Table 5, and we let the two input relations haveequal size for these experiments.The �rst model for comparison is the one proposedby Shapiro [Sha86]. Using the notation de�ned in thispaper and letting IO denote the average time for an I/Orequest, and q denote the ratio jR0jjRj , the hybrid hash costderived in [Sha86] is:CostS = (jRj+ jSj)�Ntuples � Ihash ++ (jRj+ jSj)�Ntuples � (1� q)�Icopy � Sizetuple+ 2� (jRj+ jSj)� (1� q)� IO+ (jRj+ jSj)�Ntuples � (1� q)� Ihash+ jRj �Ntuples � Icopy � Sizetuple+ jSj �Ntuples � Fhash � Iprobe (8)Because the costs derived in [Sha86] were used for com-paring alternative join algorithms, they did not includethe I/O costs for reading the base relations (which werethe same for all join algorithms). To reect the total costof the join, we add this additional cost, (jRj+ jSj)�IO,to the above formula. Also, to be precise, we computeIO to be the arithmetic mean of the following two quan-tities:IORead = Tread +q 13 total # cylinders� FseekFpref (9)andIOWrite = TWrite +r13 total # cylinders� Fseek (10)The other model that we compare our results to isthe one recently developed by Haas et. al. [HCL93].This model, which we shall refer to as the HCL model,estimates the cost of the join by computing the num-ber of seeks (Ns), the number of (possibly multi-page)I/O's (Nio), and the number of page transfers (Nx), andthen multiplying each of these counts by the cost of thecorresponding action (Ts; Tio and Tx). The HCL modelhas input parameters for the size of the input and the



output bu�ers. Since four pages are prefetched by thedisk on every read (refer to Table 5), we set the inputbu�er size to �ve5. The output bu�er size is one. Usingthe notation in Table 5, the various terms in the HCLcost model are computed as follows:Tx = 2:52ms(Txfer = 3:09Mb=s; Sizepage = 8KB)Tio = Trot2 (11)Ts = r13 total # cylinders� Fseek (12)Nx = jRj+ jSj+ 2� jR0j+ 2� jS0jNio = d jRj5 e+ d jR0j1 e+ d jSj5 e+ d jS0j1 e+B + d jS0j5 eNs = 2 + d jR0j1 e+ d jS0j1 e+ 2�BThe cost of the join, CostHCL, is then given byCostHCL = Nx � Tx +Nio � Tio +Ns � TsThe results of the three models for various input re-lation sizes are shown in Figures 11 and 12. As can beseen from equation 8, the disk cost in the Shapiro modelis based solely on the number of pages transferred fromthe disk. The e�ect of interference between reads andwrites is not considered. Also, a simple average I/Ocost is used in the model; the model does not accountfor sequential I/Os. As a result, the Shapiro model over-estimates the join cost. The HCL model treats the diskcosts more carefully than the Shapiro model. However,since it does not consider the e�ect of intra{operatorcontention, it ends up under{estimating the cost of thejoin, as shown in the �gures. Note that the error in theShapiro model is 193% at relation size 100, and that theabsolute error increases for relation sizes beyond 150.Note also that the error in the HCL model is as high as38% (at relation size 150), and that the absolute errorincreases (gradually) as the relation sizes increase.The reason that the HCL model does not considerinterference between reads and writes is that they as-sumed (for simplicity) a disk con�guration in which thebucket �les are on a separate disk from the base relation�les (R and S). In the next experiment, we adapt ourmodel to this con�guration and again report the com-parison. Here we will assume that the base �les are heldon a 1GB disk and that the bucket �les are written toa separate 200 MB disk.The cost formula for the Shapiro model here is simi-lar to the one used in the previous experiment, exceptthat we now use the total number of cylinders in the200MB disk for computing the seek time in IOWrite(equation 10) and the total number of cylinders in the1GB disk in computing IORead (equation 9); the two arethen averaged, as before, to compute the average I/Ocost term. Similarly, for the HCL model, the number ofcylinders in the 200MB disk was used in equation 12 forcomputing the seek cost Ts.5The HCL model does not consider disk caching precisely, but set-ting the input bu�er size to �ve models the e�ect of reading �ve{pageblocks.

The changes required for our own model in this caseinclude setting SeekCW to represent the average seek forthe writes on the 200MB disk and removing the queue-ing terms from the disk response time equations, yield-ing SreadMiss = TReadSwrite = TWrite + 1:0� SeekCWR1;Disk = SreadMissFprefR2;Disk = SwriteThe results of this �nal comparison are shown in Fig-ure 13. The Shapiro model behaves in the same wayas before, while the HCL model and our model matchsurprisingly closely. One would have expected the jointimes estimated by the HCL model to be lower than thejoin times of our model, as the HCL model does notinclude CPU costs. Moreover, as shown in Figure 14,which plots the CPU cost for performing a join as a per-centage of the total join execution time, the CPU costcan be signi�cant. 6 (The CPU cost that contributes tothe total join execution time in our model is estimatedin Figure 14 by adding the CPU costs of the slowerprocess in each phase.) Another modeling di�erence,however, is that the HCL model does not consider theintra{operator parallelism that arises here with two pro-cesses (joins and scans) being simultaneously active inthe system. As an example, in counting the number ofI/Os (Nio), the HCL model adds together the I/Os forreading the building relation (d jRj5 e) and for writing thebucket �les (d jR0j1 e). However, these I/Os could be oc-curring in parallel, as they are issued to di�erent disks.Our model captures the intra{operator parallelism byseparately accounting for the two processes (the joinsand the scans) and using the process model to predictthe �nal execution time. For the system parametersused here, the HCL model's overly high I/O cost esti-mate, due to not considering the intra{operator paral-lelism, seems to o�set its lack of a CPU cost component.5 Conclusions and Future WorkIn this paper we have developed an analytical model ofthe execution time for the hybrid hash join algorithm inthe case of a single join running stand-alone on a sin-gle node. Even this simple case required that complexbehavior be accounted for, including intra-operator diskinterference patterns, disk seek times that are inuencedby �le placement as well as interference, intra{operatorsynchronization, and caching of disk pages. Throughcomparisons with results from a detailed database sys-tem simulator, the model was shown to be highly ac-curate { not only in predicting overall join processing6The CPU contributions, shown in Figure 14, are high for joins ofsmall relations because the building relation can be held entirely inmemory. Since the reads are sequential and not interfered with in thiscase, the cost of reading a page is small; the CPU time thus becomescomparable to the disk time. Beyond a size of 100K, however, thebuilding relation is too big to �t in memory and bucket writes areincurred. Since writes take longer than reads, the contribution of theCPU cost as a percentage of the total join cost then decreases.



times, but also for more detailed performance measuressuch as I/O response times. The model was also shownto be more accurate than previously published join costmodels.It is interesting to note that, in the course of devel-oping and validating the analytical model, various as-sumptions that were made implicitly when building thesimulator were exposed and reexamined. In some cases,the simulator was modi�ed as a result of these reec-tions. As one example, the simulator initially assumedthat the bu�er used for communication between the scanand join processes was unbounded. As another exam-ple, it assumed that tuples could span page boundaries(i.e., that a 200 byte tuple could have its �rst 50 byteson one page and the remaining 150 bytes on the nextpage). While simulations are often used to validate an-alytical models, these sorts of assumptions are easilyoverlooked when implementing a simulator. Thus, it isimportant to note that analytical models can actuallybe quite useful for improving con�dence in the validityof the simulator (rather than only the vice versa).The model that we have developed thus far is intendedprimarily as a proof of concept and as a starting pointfor developing models for studying query scheduling andmemory management strategies for multiprogrammedsystems and/or parallel systems. As pointed out in theIntroduction, accurate and e�cient analytical modelsof such systems would facilitate a more complete explo-ration of the system design space as well as enablingthe study of very large systems. As an example of howmuch more e�cient analytical models might be, a sin-gle data point for the case of joining two 500K tuplerelations (in Figure 6) required approximately 29 min-utes to simulate; evaluating the analytical model tookonly 0.75 milliseconds for the same case. (Note that weran the join 20 times in the simulation and then aver-aged the resulting join execution times.) Moreover, thesystem that we were simulating was relatively simple,consisting of a single node and a small amount of mainmemory (4096 8K pages), and the cost of simulationgrows rapidly as systems become more complex.6 AcknowledgementWe would like to thank Kurt Brown for inspiring thiswork, for many useful comments, and for taking timeto explain various details of the simulator (ZetaSim)that was used to validate the model presented here. Wewould also like to thank all of the ZetaSim developers forhaving provided us with an excellent simulator; withoutit, much of this work would not have been possible.References[BCL93] K. P. Brown, M. J. Carey, and M. Livny. \Manag-ing Memory to Meet Multiclass Workload Response TimeGoals". In Proc. of the 19th VLDB Conf., Dublin, Ireland,August 1993.[BE77] M. W. Blasgen and K. P. Eswaran. \Storage andaccess in Relational Databases". IBM Sys. Journal, 16(4),1977.
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